Деление отрезка в заданном отношении Начертательная
Проекции Косоугольные аксонометрические проекции Прямоугольная изометрия Выбор аксонометрических проекций Решение главных позиционных задач Методические рекомендации к решению задачи Построение проекций поверхностей вращения

Решение задач по начертательной геометрии

Пирамида

Пирамидой называется многогранник, в основании которого лежит многоугольник, а боковые грани являются треугольниками, имеющими общую вершину. Элементы пирамиды показаны на рис. 4.

Ортогональные проекции правильной полной пирамиды.

На рис. 4 показано проецирование пирамиды. Порядок выполнения ортогонального чертежа такой же, как и чертежа призмы.

Сначала проводят оси координат, осевые и центровые линии, а потом на центровых линиях строят горизонтальную проекцию пирамиды, начиная построение с многоугольника, лежащего в основании (рис. 5). Основание пирамиды расположено в плоскости Н. Все боковые грани спроецируются в треугольники. Горизонтальная проекция вершины S совпадает с центром основания – точкой О1. Таким образом, на горизонтальной проекции пирамиды боковые грани будут видимыми, но спроецируются они с искажением, так как располагаются наклонно относительно плоскости Н. Плоскость основания будет невидимой, так как закрыта боковыми гранями пирамиды.

При построении фронтальной проекции пирамиды ее основание как

плоскость, перпендикулярная к плоскости V, спроецируется в отрезок, который совпадает с осью Ох, так как основание лежит в плоскости Н. Боковые грани пирамиды проецируются в треугольники с искажением, так как расположены наклонно относительно плоскости V. Грани 1S2 и 1S3 будут видимыми, а грань 2S3 – невидимой.

На профильную плоскость проекций основание пирамиды тоже спроецируется в отрезок, лежащий на оси Оу. Проекции боковых граней 1S2 и 1S3 на плоскости W совпадают, а грань 2S3 проецируется в прямую линию, так как она расположена перпендикулярно плоскости W. Видимой гранью боковой поверхности будет грань 1S2.

Рис. 4.

Рис. 5.

Построение правильной полной пирамиды в аксонометрии (изометрии).

Построение начинают с проведения аксонометрических осей Ох, Оу и Оz (рис. 6, б). Высоту пирамиды располагают на оси Оz. Вторичная проекция вершины будет находиться в точке О1. От точки О1 по оси Оу откладывают расстояние до вершины 1 основания и до середины стороны основания 2 3, взятое с горизонтальной проекции пирамиды, где оно измеряется от горизонтальной проекции s вершины S. Через середину стороны 23 проводят прямую линию параллельно оси Ох и на ней в обе стороны откладывают отрезки, равные половине стороны основания. Этот размер берется с горизонтальной проекции основания. От точки О1 по оси Оz откладывают высоту пирамиды, которую берут с фронтальной или профильной проекции, где она изображается без искажения, так как параллельна оси Оz. Видимой боковой гранью пирамиды будет ближняя грань 1S2. Две другие грани боковой поверхности и основание невидимые.

Построение точки, лежащей на поверхности пирамиды.

Точка А лежит на боковой поверхности пирамиды, задана ее профильная проекция а" (рис. 6, а). Требуется построить фронтальную и горизонтальную проекции этой точки, а также построить ее на изометрическом изображении пирамиды.


Рис. 6, а. Рис. 6, б.

Поскольку боковая грань, на которой лежит точка А, располагается наклонно ко всем трем плоскостям проекций, то ни на одну из этих плоскостей она не спроецируется в линию, как это было у правильной пятиугольной призмы. Построить две проекции заданной точки можно только с помощью дополнительных построений, для чего в плоскости 1S2 проводят прямую через точку А. Профильную проекцию этой прямой можно провести в любом направлении через проекцию а" точки А. На эпюре эта проекция проведена через проекцию s" вершины S до пересечения со стороной основания 1"2" в точке 4"'. Для построения проекций точки А нужно построить проекции дополнительной прямой s4 на плоскостях V и H.  Для построения ее горизонтальной проекции от точек 4" и а" с профильной проекции на горизонтальную проводят линии проекционной связи: из точки 4" – до пересечения со стороной 1 2 в точке 4; из точки а" – до пересечения с построенной прямой s4 в точке а, которая будет горизонтальной проекцией точки А. Имея две проекции точки А, фронтальную проекцию а' точки А находят с помощью линий проекционной связи.

При построении точки А в изометрической проекции необходимо сначала построить на основании пирамиды ее вторичную горизонтальную проекцию (рис. 6, б). Для этого на плоскости Н определяются координаты ХA = п и УА = т относительно горизонтальной проекции s вершины S. Эти размеры (п и т) откладывают в изометрии от точки О1 (рис. 6, б), получают вторичную горизонтальную проекцию а1 точки А.

Через построенную точку а1 параллельно оси Оz проводят линию, на которой откладывают расстояние h, взятое с фронтальной или профильной проекции. Полученная точка А и будет изображением точки А в изометрии.


Построение аксонометрического чертежа фигуры, заданной комплексным чертежом