Построить пересечение двух поверхностей вращения
Проекции Косоугольные аксонометрические проекции Прямоугольная изометрия Выбор аксонометрических проекций Решение главных позиционных задач Методические рекомендации к решению задачи Построение проекций поверхностей вращения

Решение задач по начертательной геометрии

Пример 2 Построить проекции линии пересечения поверхности эллипсоида вращения S с призматической поверхностью L (рис. 3.6).

Алгоритм решения:

S Ç L = т

S Ç L = т, 2 ГПЗ

L // П2, S – непроецирующая Þ 2 алгоритм

L // П2 Þ т 2 =L2 ; т 1 Ì S1

 Рис. 3.6

Сначала строим две проекции эллипсоида и недостающую проекцию призмы (рис. 3.7).

После построения проекций поверхностей определяется вид пересечения. В данном примере вид пересечения – вмятие. Из этого следует, что линия пересечения – один замкнутый контур.

При пересечении эллипсоида одной гранью призмы линией пересечения будет плоская кривая - эллипс или дуга эллипса. А так как поверхность призмы состоит из четырех граней, то линия пересечения ее с поверхностью эллипсоида вращения представляет собой пространственный контур из плоских кривых – дуг эллипсов.

Рис. 3.7

Решение.

Горизонтальную проекцию линии m строим по принадлежности ее непроецирующей поверхности S, эллипсоиду вращения. Так как эллипсы на П1 симметричны относительно плоскости фронтального меридиана, то точки на П1 будем обозначать только в одной половине эллипсоида.

1. Сначала обозначаем главные точки линии пересечения (рис. 3.8).

Точки 1 и 1¢, 3 и 3¢, 6 – ограничивают линии пересечения (дуги эллипсов).

Точки 4 и 4¢ принадлежат экватору эллипсоида.

Точки 2 и 2¢, 5 и 5¢ определяют большие оси эллипсов.

2. Рассмотрим построение одной из дуг эллипса, которая получается от пересечения грани k с поверхностью эллипсоида вращения (рис. 3.9). Фронтальная проекция ее совпадает с фронтальной проекцией грани. Малая ось эллипса определяется точками А и В, которые на П2 являются пересечением продолжения грани k с главным меридианом эллипсоида вращения.

Большая ось (на П2) вырождается в точку 5 и делит отрезок АВ пополам.

Точки пересечения ребер призмы с поверхностью эллипсоида – точки, ограничивающие дугу эллипса (3 и 6).

Рис. 3.8

 Рис. 3.9

Горизонтальные проекции этих точек, а также любых промежуточных строим по принадлежности параллелям эллипсоида. Например, точка 6 и ей симметричная лежат на параллели – окружности, фронтальная проекция которой вырождена в отрезок прямой, равный диаметру этой параллели и перпендикулярный оси вращения i2, а горизонтальная проекция – окружность в истинном виде.

Линии пересечения остальных граней с поверхностью строим аналогично.

Определение видимости линии пересечения двух поверхностей относительно П1 в данном примере сводится к определению видимости точек на поверхности призмы. Две верхние грани призмы видимые, поэтому и линии, принадлежащие им, видимые.

Примеры решения 1 ГПЗ в случае, когда обе пересекающиеся фигуры - непроецирующие (3 алгоритм)

Алгоритм решения.

Прямую заключают во вспомогательную плоскость.

Строят линию пересечения заданной поверхности со вспомогательной плоскостью.

Линия пересечения с заданным отрезком прямой пересекаются, так как лежат в одной вспомогательной плоскости. Полученные точки (точка) пересечения и будут искомые.

Независимо от того, какая поверхность пересекается с отрезком прямой, алгоритм решения всегда одинаков.

Пример1. Построить проекции точек пересечения отрезка прямой а c октаэдром S. а Ç S = М, N (рис. 3.10).

Сначала надо построить проекции поверхности октаэдра S - проекции ребер, проходящих через вершины ломаной направляющей A,B,C,D и точки E и F (рис. 3.11).

Видимость ребер можно определить визуально, без помощи конкурирующих точек. Вершина D, принадлежащая направляющей, расположена дальше других вершин этой же направляющей, значит, ребра FD и ED, проходящие через нее, будут относительно П2 невидимыми. Невидимыми относительно этой же плоскости проекций будут звенья направляющей AD и DC, а значит, и грани АED, AFD, DEC, DFC.

Относительно П1 видимыми будут те ребра и грани, которые расположены выше направляющей ABCD – DEA, CED, BEC, AEB.

 Рис. 3.10 Рис. 3.11

Решение.

1. Прямую а заключим во фронтально – проецирующую плоскость

L (а2 = L2). LÇSÞm – ломаная линия. Так как L // П2, следовательно, m2 Ì L2. (рис. 3.12).

2.Горизонтальную проекцию m построим по принадлежности ее октаэдру S, непроецирующей фигуре: точка 1 Ì AF, значит, точка 11 Ì А1 F1 ; точка

2 Ì АВ Þ 21 Ì А1 В1 и т.д.

3.Определим видимость линии m относительно П1. Видимыми будут те участки ломаной линии m, которые лежат на видимых гранях ABE, BEC, CED.

Отрезок прямой а и линия m принадлежат одной плоскости L, следовательно, они пересекутся в точках M и N: m Ç a = M, N.

4. Определим видимость пересекающихся фигур относительно друг друга.

Между точками М и N отрезок прямой на обеих проекциях невидимый, так как находится внутри поверхности S. Горизонтальная проекция отрезка до точки N1 видимая, потому что точка N лежит на видимой относительно П1 грани ВЕС. М1 – невидимая, значит, горизонтальная проекция а от М1 до А1D1 также невидимая, так как закрыта видимой гранью AED.

 Рис. 3.12

Видимость отрезка прямой относительно П2 определяется аналогично.

 

 

 

 

 

 

 

 

 

 

 

 

 

 


Построение аксонометрического чертежа фигуры, заданной комплексным чертежом