Лекции по черчению, начертательной геометрии
Проекции Косоугольные аксонометрические проекции Прямоугольная изометрия Выбор аксонометрических проекций Решение главных позиционных задач Методические рекомендации к решению задачи Построение проекций поверхностей вращения

Решение задач по начертательной геометрии

Методические рекомендации к решению задачи № 3

Чтобы решить позиционную задачу, нужно ответить на три вопроса:

1. Что? Определить, что будет являться общим элементом пересекающихся геометрических фигур (точки, ломаная линия, контур из плоских кривых, пространственная кривая и т. д.).

2. Сколько? Нужно знать характер пересечения геометрических фигур (чистое проницание, частный случай проницания – касание, вмятие).

3. Как? Выбрать соответствующий алгоритм решения, т.е. определить расположение пересекающихся геометрических фигур относительно плоскостей проекций (1 алгоритм, 2 алгоритм или 3 алгоритм).

Примеры решения 2 ГПЗ в случае, когда одна из пересекающихся фигур проецирующая, вторая – непроецирующая. 2 алгоритм

Пример 1 . Построить проекции линии пересечения поверхностей сферы S и цилиндра вращения - L -. S Ç L = т (рис. 3.1).

Алгоритм решения:

S Ç L = т, 2 ГПЗ

L // П1, S – непроецирующая Þ 2 алгоритм

L // П1Þ m 1 =L1 ; m 2 Ì S2

Сначала строим две проекции сферы и недостающую проекцию цилиндра вращения (рис. 3.2).

 Рис. 3.1 Рис. 3.2

Вид пересечения – проницание. Значит, линий пересечения будет две:

S Ç L = m, . Обе поверхности являются поверхностями вращения второго порядка. Следовательно, при их пересечении получатся пространственные кривые второго порядка.

Решение.

Поверхность цилиндра L - проецирующая относительно П1, следовательно, горизонтальные проекции двух пространственных кривых линий пересечения совпадают с горизонтальной проекцией (главной проекцией) цилиндра

m1 , = L1

Фронтальные проекции обеих линий строим по принадлежности поверхности сферы.

1. Начинать построение фронтальных проекций линий пересечения следует с главных точек. Такими являются точки 1 и 7 как высшие и низшие точки, лежащие в общем осевом сечении поверхностей вращения (горизонтальная проекция); точки 2, и 8, как самые ближние и дальние; точки 5, и 11, как точки, лежащие на границе видимой и невидимой частей линий пересечения (рис. 3.3). Выбираем несколько промежуточных точек.

  Рис. 3.3

2. Для построения фронтальных проекций точек проводим окружности – параллели на поверхности сферы. Например, проводим окружность через точки 11 и 31 (рис. 3.4). Горизонтальная проекция такой окружности вырождается в отрезок прямой, перпендикулярный оси сферы. Радиусом, равным половине этого отрезка, строим ее фронтальную проекцию, которая на П2 изображается в истинном виде. Точки 12 и 32 принадлежат этой окружности.

Аналогично строим проекции всех остальных точек (и характерных и промежуточных) на П2.

Соединять построенные точки нужно в той же последовательности, что и на горизонтальной плоскости проекций, плавной кривой тонкой линией с последующей лекальной обводкой.

3. Решая вопрос видимости искомых линий относительно соответствующей плоскости проекций, надо помнить, что линии пересечения принадлежат обеим поверхностям одновременно. Поэтому видимыми будут те участки линий, которые лежат в зоне видимости обеих поверхностей относительно данной плоскости проекций (рис. 3.5).

Относительно П2 в зоне видимых точек будут лежать точки 11, 12, 1, 2, 3, 4, 5. Участки кривых, лежащих между точками 5, 6 и 10, 11, находятся в области видимых точек поверхности сферы, но невидимых точек поверхности цилиндра, поэтому будут невидимыми.

 

 Рис. 3.4

Рис. 3.5


Построение аксонометрического чертежа фигуры, заданной комплексным чертежом