Контрольные задания КОЛИЧЕСТВЕННЫЙ АНАЛИЗ
Проекции Косоугольные аксонометрические проекции Прямоугольная изометрия Выбор аксонометрических проекций Решение главных позиционных задач Методические рекомендации к решению задачи Построение проекций поверхностей вращения

Решение задач по начертательной геометрии

2 алгоритм.

Решение задач в случае, когда одна из пересекающихся фигур проецирующая, вторая - непроецирующая.

Решение 1 ГПЗ снова рассмотрим на конкретном примере.

Задача: Найти проекции точки пересечения плоскости общего положения S(m || n) с фронтально проецирующей прямой а (рис. 3-12).

Рис. 3-12

Графическое условие этой задачи подобно условию 1 ГПЗ, показанному на рис. 3-7. Такая же фронтально проецирующая прямая а пересекается с плоскостью S(m || n). Только, в данной задаче плоскость S - общего положения.

Алгоритм: Решение начинаем, как и в первом случае, с фронтальной проекции. Точно так же, фронтальная проекция точки пересечения К2 совпадёт с фронтальной проекцией прямой а2, так как а2 - точка (рис. 3-13).

Рис. 3-13

Горизонтальную проекцию точки пересечения К1 найти так однозначно, как в первом случае, уже невозможно. Поэтому будем находить её по признаку принадлежности плоскости S. Точка принадлежит плоскости, если она принадлежит прямой, лежащей в этой плоскости. Возьмём в плоскости S любую прямую, проходящую через точку К2, например, 1222, найдём её горизонтальную проекцию 1121 (1Îm, 2În) и на этой прямой будет располагаться точка К1.

Следующим этапом необходимо определить видимость прямой а на горизонтальной проекции. Для этого воспользуемся методом конкурирующих точек (рис. 3-14).

Рис. 3-14

Так как плоскость S имеет с прямой а только одну общую точку К, то прямые m и а - скрещивающиеся, а точки 3 и 4 на них – горизонтально конкурирующие. Пусть точка 3 принадлежит прямой m (то есть плоскости S), точка 4 принадлежит прямой а. Находим фронтальные проекции точек. Из чертежа рис. 3-14 видно, что точка З2 расположена выше, чем точка 42. Следовательно, на данном участке, начиная от точки пересечения К1, до прямой m1 прямая а1 не видна.

Выполним краткую алгоритмическую запись решения:

S(m || n) Ç a = K; 1 ГПЗ, 2 алгоритм

К Î a , а ^^ П2 Þ К2 =а2.

К1 Î S, К Î12, 12 Ì S Þ К1 = а1 Ç 1121.

Рассмотрим ещё одну задачу: Пересекаются прямая общего положения а с поверхностью горизонтально проецирующего цилиндра Г (рис. 3-15). Найти проекции точек пересечения.

Рис. 3-15

Решение: 1 ГПЗ , 2 алг. Горизонтальная проекция цилиндра - окружность Г1, следовательно, в результате пересечения получаются 2 точки М и N , горизонтальные проекции которых М1 и N1 располагаются на пересечении Г1 и а1 (рис. 3-16).

Рис. 3-16

Фронтальные проекции точек пересечения М2 и N2 находим по принадлежности прямой а с использованием линии связи. Видимость на П2 определяем по цилиндру: точка N1 расположена перед плоскостью фронтального меридиана Ф, и N2 - видимая; М1 расположена за плоскостью фронтального меридиана Ф, и М2 - невидимая. Часть прямой а между точками М и N находится внутри цилиндра, следовательно, на П2 участок прямой между точками М2 и N2 невидимый. Участок прямой между точкой М2 и очерковой образующей цилиндра l2 также невидим, так как находится за плоскостью фронтального меридиана. Алгоритмическая запись решения:

Г Ç а = М, N, 1 ГПЗ, 2 алгоритм.

М, N Î Г, Г ^^ П1 Þ M1, N1 = Г1 Ç а1.

М, N Î a Þ M2 ,N2 Î a2.

Вывод: Решение задач по 2 алгоритму сводится к следующему:

Выделяют из двух заданных фигур проецирующую и отмечают её главную проекцию .

Ставят обозначение той проекции искомого общего элемента, которая совпадает с главной проекцией проецирующей фигуры. Если совпадение только частичное, то находят границы общей части.

Вторую проекцию общего элемента находят по условию его принадлежности непроецирующей фигуре.

Определяют видимость проекций общих элементов и пересекающихся фигур.


Построение аксонометрического чертежа фигуры, заданной комплексным чертежом