Безопасность атомной энергетики

Экология энергетики
Признаки классификации атомных реакторов
Блочный щит управления энергоблока
Разгрузочно-загрузочная машина
ТОПЛИВНО-ЭНЕРГЕТИЧЕСКИЕ РЕСУРСЫ
Реакторы на быстрых нейтронах
БН-350
Реактор БН-800
Физические  основы атомной энергетики
Особенности ядерных реакторов
Безопасность современных атомных реакторов
АЭС с реакторами ВВЭР нового поколения
Основные требования к безопасности АЭС с реакторами ВВЭР нового поколения
РЕАКТОР БРЕСТ – 300
Анализ безопасности реактора БРЕСТ–300
Энергетика - острейшая проблема цивилизации
Ядерный реактор
РБМК - Реактор Большой Мощности Канальный
Реактор с гелиевым теплоносителем
Реакторы с натриевым теплоносителем
Реакторы со свинцово-висмутовым теплоносителем
ОБЩЕЕ УСТРОЙСТВО ЭЛЕКТРОСТАНЦИИ
УСТРОЙСТВО РАЗЛИЧНЫХ ТИПОВ ЯДЕРНЫХ РЕАКТОРОВ
ВВЭР и РБМК: сравнительные характеристики
ФАКТОРЫ ОПАСНОСТИ ЯДЕРНЫХ РЕАКТОРОВ
СПИСОК НАИБОЛЕЕ ЗНАЧИТЕЛЬНЫХ ЯДЕРНЫХ АВАРИЙ ХХ СТОЛЕТИЯ
Уиндскейл, Великобритания 10 октября 1957 года
ЧЕРНОБЫЛЬСКАЯ КАТАСТРОФА

В современном проекте реактора БН-800, в котором использованы основные инженерные решения БН-600, реализованы дополнительные конструктивные решения, обеспечивающие сохранение герметичности реактора и исключение недопустимого воздействия на окружающую среду, даже при постулированной маловероятной аварии с расплавлением активной зоны реактора.

Многолетняя эксплуатация быстрых реакторов подтвердила достаточность и эффективность предусмотренных мер обеспечения безопасности. За 25 лет эксплуатации реактора БН-600 не было аварий со сверхнормативными выбросами радиоактивности, переоблучением персонала и, тем более, местного населения. Быстрые реакторы продемонстрировали высокую устойчивость в работе, они легко управляются. Освоена технология натриевого теплоносителя, которая эффективно нейтрализует такой его недостаток, как пожароопасность. Утечки и горение натрия уверенно обнаруживаются, а их последствия надежно локализуются. В последние годы все более широкое применение в проектах быстрых реакторов находят системы и устройства пассивного принципа действия, способные перевести реактор в безопасное состояние без вмешательства персонала и подвода энергии извне.

Технико-экономические показатели быстрых реакторов. Особенности натриевой технологии, дополнительные меры безопасности, консервативный выбор проектных решений первых реакторов БН-350 и БН-600 стали причинами повышенной их стоимости по сравнению с реакторами, охлаждаемыми водой. Однако главной задачей создания первых быстрых реакторов было представительное подтверждение их работоспособности, безопасности и надежности. Эта задача и была решена созданием и успешной эксплуатацией указанных реакторов. При создании следующей реакторной установки БН-800 для энергоблока, рассматривавшегося в качестве серийного для массового использования в атомной энергетике, ее технико-экономическим характеристикам было уделено более пристальное внимание. В результате удалось существенно сблизиться по удельным капитальным затратам с основным типом реакторов, используемых в современной атомной энергетике России, – ВВЭР-1000.

Проблема достижения конкурентоспособности быстрых реакторов в современных условиях выходит на первый план. К настоящему времени можно считать установленным, что быстрые реакторы с натриевым теплоносителем имеют большой потенциал технико-экономического совершенствования. Определены основные направления улучшения их экономических характеристик при одновременном повышении уровня безопасности. К их числу относятся:

повышение единичной мощности реактора и основных компонентов энергоблока;

совершенствование конструкции основного оборудования;

переход на закритические параметры пара с целью увеличения термодинамического КПД цикла преобразования тепловой энергии;

оптимизация системы обращения со свежим и отработавшим топливом;

увеличение глубины выгорания ядерного топлива;

создание активной зоны с высоким внутренним коэффициентом воспроизводства (до КВ≈1);

увеличение срока службы до 60 и более лет.

Совершенствование отдельных видов оборудования, как показали конструкторские проработки, выполненные в ОКБМ, может оказать весьма существенное влияние на улучшение технико-экономических показателей и реакторной установки, и энергоблока в целом. Например, проработки по совершенствованию системы перегрузки реактора БН-1800 показали возможность значительного уменьшения металлоемкости этой системы. Замена модульных парогенераторов на корпусные оригинальной конструкции позволяет значительно уменьшить площадь, объем и материалоемкость парогенераторного отделения энергоблока.

Влияние мощности реактора и технологического совершенствования оборудования на металлоемкость и уровень капитальных затрат можно видеть из табл.2.

Таблица 2. Эволюция удельных экономических показателей реакторных установок типа БН

Параметр

БН-600 (эксплуати-руется)

БН-800 (строится)

БН-1800 (концептуальный проект)

Мощность реактора, МВт:

тепловая

электрическая

1470

600

2100

880

4000

1780

Удельные затраты металла по реакторной установке, отн.ед.

1

0,7

0,33

Удельные кап.вложения в сооружение одноблочной АЭС, отн.ед.

1

0,9

0,48

Реализация потенциала технико-экономического совершенствования быстрых реакторов, естественно, потребует определенных усилий со стороны научных и проектных организаций и промышленных предприятий. Так, для увеличения глубины выгорания ядерного топлива потребуется разработка и освоение производства более радиационно-стойких конструкционных материалов активной зоны реактора. Работы в этом направлении в настоящее время ведутся.

Избыток нейтронов в быстрых реакторах и их энергетический спектр, в котором делятся все трансурановые элементы (актиноиды), образующиеся в ядерном топливе, позволяют осуществить в них эффективное «сжигание» наиболее опасных и долгоживущих радионуклидов из отходов топливного цикла. Это имеет принципиальное значение для решения проблемы обращения с радиоактивными отходами атомной энергетики. Дело в том, что период полураспада актиноидов далеко выходит за рамки имеющихся научных данных, используемых для обоснования сроков стабильности геологических формаций, рассматриваемых в настоящее время в качестве мест окончательного захоронения радиоактивных отходов. Поэтому замкнутый топливный цикл с выжиганием актиноидов и трансмутацией долгоживущих продуктов деления в короткоживущие открывает возможность радикального решения проблемы захоронения радиоактивных отходов атомной энергетики. Кроме этого, переработка облученного ядерного топлива в таком цикле позволяет многократно уменьшить физический объем радиоактивных отходов, подлежащих захоронению.

Таким образом, формирование структуры атомной энергетики, включающей, наряду с «тепловыми», быстрые реакторы-бридеры, работающие в замкнутом топливном цикле, позволит создать безопасную энерготехнологию, в полной мере отвечающую требованиям устойчивого развития человеческого общества.

Внутрицикловая газификация топлива Получение из твердого топлива горючего газа технологически включенное в термодинамический цикл производства электроэнергии, тепла или другого продукта или их совокупности есть внутрицикловая газификация.

Котлы с циркулирующим кипящим слоем (ЦКС) Кипящий слой характеризуется интенсивностью дутья, превышающей предел устойчивости плотного слоя, но далеко не достигающей скорости витания частиц крупных размеров

Предварительная термическая подготовка твердого топлива с частичной газификацией.

Высокотемпературная подготовка топлива в специальном предтопке - как элементная база экологически перспективного направления развития ТЭЦ.

Недостатком технологии с термической подготовкой топлива можно считать усложнение системы тополивоподготовки по сравнению с традиционными из-за необходимости создания двух потоков топлива (рабочего и инициирующего) и организации паровоздушного дутья для частичной газификации.

УСТРОЙСТВО РАЗЛИЧНЫХ ТИПОВ ЯДЕРНЫХ РЕАКТОРОВ